SCIENTIFIC PUBLICATIONS

You are researching: Osteosarcoma
Matching entries: 6 /6
All Groups
AUTHOR Lara Ali Nazar and Sarah Sameer Al-salman and Sumyah Hasan Torki and Mastafa H. Al-Musawi and Aliakbar Najafinezhad and Parastoo Noory and Eslah Shakir Rajab and Negin Khosravi and Sina Talebi and Fariba Azamian and Hamideh Valizadeh and Fariborz Sharifianjazi and Ketevan Tavamaishvili and Mehdi Mohabbatkhah and Mina Shahriari-Khalaji and Sepideh Nasiri-Harchegani and Morteza Mehrjoo and Mohamadreza Tavakoli and Marjan Mirhaj
Title 3D printed PHB-dextran-whitlockite porous construct coated with sildenafil-loaded nanofibers: a hybrid scaffold for craniofacial reconstruction [Abstract]
Year 2025
Journal/Proceedings International Journal of Biological Macromolecules
Reftype
DOI/URL URL DOI
Abstract
In this study, a novel hybrid scaffold comprising 3D-printed porous polyhydroxybutyrate (PHB), dextran (Dex), and magnesium-doped whitlockite (WL) nanoparticles was developed, which were further enhanced with an electrospun nanofibrous coating composed of Dex and Pluronic F127 (F127) loaded with Sildenafil (Sil) for use in craniofacial regeneration. This design was intended to improve the solubility of sildenafil and enable controlled release. Scanning electron microscopy (SEM) revealed a well-integrated structure between the 3D-printed strands and electrospun nanofibers. The scaffold exhibited sustained release of Sil over 28 days, with mechanical testing showing a compressive strength of 3.70 ± 0.33 MPa and an elastic modulus of 49.04 ± 4.62 MPa. Non-toxicity was confirmed via MTT assay on the MG63 cell line, and qRT-PCR results indicated significantly higher expression levels of collagen I, RUNX2, osteocalcin, VEGF, and CD31 markers associated with osteogenesis and angiogenesis. Following implantation in a rat calvarial defect model, the scaffold demonstrated robust osteogenic activity and new bone tissue formation over an eight-week period. This innovative scaffold design offers a promising solution for overcoming the challenges in craniofacial defect repair by integrating bioactive materials with advanced drug delivery systems, leading to more effective tissue regeneration strategies.
AUTHOR Shangsi Chen, Yue Wang, Junzhi Li, Haoran Su, Ming-Fung Francis Siu, Shenglong Tan
Title 3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration
Year 2024
Journal/Proceedings IJB
Reftype
DOI/URL DOI
AUTHOR Yanhao Hou and Weiguang Wang and Paulo Bartolo
Title The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications [Abstract]
Year 2024
Journal/Proceedings Materials Today Bio
Reftype
DOI/URL URL DOI
Abstract
Bone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
AUTHOR Pellegrini, Evelin and Desando, Giovanna and Petretta, Mauro and Cellamare, Antonella and Cristalli, Camilla and Pasello, Michela and Manara, Maria Cristina and Grigolo, Brunella and Scotlandi, Katia
Title A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response [Abstract]
Year 2022
Journal/Proceedings Polymers
Reftype
DOI/URL URL DOI
Abstract
The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
AUTHOR Hou, Yanhao and Wang, Weiguang and Bártolo, Paulo
Title Novel Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration [Abstract]
Year 2020
Journal/Proceedings 3D Printing and Additive Manufacturing
Reftype
DOI/URL DOI
Abstract
Scaffold-based bone tissue engineering is the most relevant approach for critical-sized bone defects. It is based on the use of three-dimensional substrates to provide the appropriate biomechanical environment for bone regeneration. Despite some successful results previously reported, scaffolds were never designed for disease treatment applications. This article proposes a novel dual-functional scaffold for cancer applications, comprising both treatment and regeneration functions. These functions are achieved by combining a biocompatible and biodegradable polymer and graphene. Results indicate that high concentrations of graphene enhance the mechanical properties of the scaffolds, also increasing the inhibition on cancer cell viability and proliferation.
AUTHOR D'Amora, Ugo and D'Este, Matteo and Eglin, David and Safari, Fatemeh and Sprecher, Christoph and Gloria, Antonio and De Santis, Roberto and Alini, Mauro and Ambrosio, Luigi
Title Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering
Year 2017
Journal/Proceedings Journal of tissue engineering and regenerative medicine
Reftype
DOI/URL DOI