BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Nickel Zinc ferrite
                                                    Cell Type
                                                    Tissue and Organ Biofabrication
                                                    Skin Tissue Engineering
                                                    Drug Delivery
                                                    Biological Molecules
                                                    Solid Dosage Drugs
                                                    Stem Cells
                                                    Personalised Pharmaceuticals
                                                    Inducend Pluripotent Stem Cells (IPSCs)
                                                    Drug Discovery
                                                    Cancer Cell Lines
                                            
                                    
                    All Groups
                    
            - Cell Type
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Fibroblasts
- β cells
- Astrocytes
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Epicardial Cells
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Extracellular Vesicles
- Osteoblasts
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Epithelial
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- T cells
 
- Institution
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Minnesota
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Jiangsu University
- Rowan University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- University Hospital Basel
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Shandong Medical University
- University of Birmingham
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
 
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
	- Bone Tissue Engineering
- Dental Tissue Engineering
- Drug Delivery
- Urethra Tissue Engineering
- Skin Tissue Engineering
- Uterus Tissue Engineering
- Gastric Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
 
- BioSensors
- Personalised Pharmaceuticals
 
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
	- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
- PEDOT
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- Polyethylene
- SEBS
- Polypropylene Oxide (PPO)
- Carbopol
- Sucrose Acetate
- Polyhydroxybutyrate (PHB)
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- 2-hydroxyethyl methacrylate (HEMA)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
 
- Micro/nano-particles
- Biological Molecules
- Bioinks
	- Polyethylene glycol (PEG) based
- α-Bioink
- Poly(Acrylic Acid)
- Collagen
- Elastin
- Heparin
- sulfobetaine methacrylate (SBMA)
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- carboxybetaine acrylamide (CBAA)
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
 
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
 
- Bioprinting Technologies
- Bioprinting Applications
                            AUTHOR
                            
                                    
                                
                        
                        
                            Title
                            
                                    A 3D-printing method of fabrication for metals{,} ceramics{,} and multi-materials using a universal self-curable technique for robocasting
                                
                                                            
                                    
                                        
                                            [Abstract]
                                        
                                    
                                
                                                    
                                                
                            Year
                            
                                    2019
                                
                        
                        
                            Journal/Proceedings
                            
                                    Materials Horizons
                                
                        
                        
                            Reftype
                            
                                    
                                
                        
                        
                            DOI/URL
                                                                                        
                                    
                                        
                                            DOI
                                        
                                    
                                
                                                    
                                                    
                                    Groups
                                
                                                                        
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                AbstractCeramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements{,} limitations of materials with high refractive index{,} tedious post-processing heat treatment processes{,} uneven drying shrinkages{,} and brittleness of green bodies. In this paper{,} a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides{,} nitrides{,} and carbides) and metals without the need for an external curing source. Through this technique{,} complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants{,} combined with a structural design providing maximum adhesion between interfaces{,} allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g.{,} zirconia with >98% theoretical density). Also{,} highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process{,} crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.

