BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Magnetorheological fluid (MR fluid - MRF)
Cell Type
Tissue and Organ Biofabrication
Skin Tissue Engineering
Drug Delivery
Biological Molecules
Solid Dosage Drugs
Stem Cells
Personalised Pharmaceuticals
Inducend Pluripotent Stem Cells (IPSCs)
Drug Discovery
Cancer Cell Lines
All Groups
- Cell Type
- Organoids
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Meniscus Cells
- Synoviocytes
- Stem Cells
- Spheroids
- Skeletal Muscle-Derived Cells (SkMDCs)
- Keratinocytes
- Macrophages
- Human Trabecular Meshwork Cells
- Neurons
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Chondrocytes
- Embrionic Kidney (HEK)
- Astrocytes
- Fibroblasts
- β cells
- Hepatocytes
- Myoblasts
- Pericytes
- Epicardial Cells
- Cancer Cell Lines
- Bacteria
- Extracellular Vesicles
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Osteoblasts
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- Epithelial
- T cells
- Institution
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
- ETH Zurich
- Hallym University
- Nanjing Medical University
- KU Leuven
- Politecnico di Torino
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- Veterans Administration Medical Center
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Rice University
- Jiangsu University
- University of Nottingham
- University of Geneva
- SINTEF
- Hefei University
- Leibniz University Hannover
- Trinity College
- Novartis
- University of Central Florida
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- University of Toronto
- Brown University
- Polish Academy of Sciences
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- Montreal University
- Shandong Medical University
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Harbin Institute of Technology
- Technical University of Berlin
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Anhui Polytechnic
- University Children's Hospital Zurich
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- DTU – Technical University of Denmark
- University of Taiwan
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- Biomaterials & Bioinks
- Application
- Bioelectronics
- Tissue Models – Drug Discovery
- Industrial
- Biomaterial Processing
- In Vitro Models
- Robotics
- Drug Discovery
- Medical Devices
- Electronics – Robotics – Industrial
- Tissue and Organ Biofabrication
- Dental Tissue Engineering
- Bone Tissue Engineering
- Urethra Tissue Engineering
- Drug Delivery
- Uterus Tissue Engineering
- Skin Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Muscle Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- BioSensors
- Personalised Pharmaceuticals
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
- Salecan
- Magnetorheological fluid (MR fluid – MRF)
- Poly(vinyl alcohol) (PVA)
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- PEDOT
- SEBS
- Polypropylene Oxide (PPO)
- Polyethylene
- Sucrose Acetate
- Carbopol
- Epoxy
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- poly (ethylene-co -vinyl acetate) (PEVA)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Poly(Oxazoline)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Poly(trimethylene carbonate)
- Paraffin
- Pluronic – Poloxamer
- Polyisobutylene
- Polyphenylene Oxide
- Ionic Liquids
- Silicone
- Konjac Gum
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Micro/nano-particles
- Biological Molecules
- Bioinks
- Poly(Acrylic Acid)
- Polyethylene glycol (PEG) based
- α-Bioink
- Heparin
- sulfobetaine methacrylate (SBMA)
- Collagen
- Elastin
- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Xanthan Gum
- Silk Fibroin
- Pyrogallol
- Paeoniflorin
- Fibronectin
- Fibrinogen
- Fibrin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- carboxybetaine acrylamide (CBAA)
- Cellulose
- Novogel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Hyaluronic Acid
- Peptide gel
- Ceramics
- Metals
- Decellularized Extracellular Matrix (dECM)
- Solid Dosage Drugs
- Bioprinting Technologies
- Bioprinting Applications
AUTHOR
Year
2018
Journal/Proceedings
Polymer
Reftype
Groups
AbstractIntelligent or smart materials have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as temperature, pH, electric or magnetic fields, etc. Magnetorheological (MR) materials are a class of smart materials whose properties can be varied by applying an external magnetic field. In this work, the possibility of employing a suitable 3D printing technology for the development of one of the smart MR materials, the magnetorheological elastomer (MRE) has been explored. In order to achieve such 3D printing, a multi-material printing is implemented, where a controlled volume of MR fluid is encapsulated within an elastomer matrix in the layer-by-layer fashion. The choice of printing materials determines the final structure of the 3D printed hybrid MR elastomer. Printing with a vulcanizing MR suspension produces the solid MR structure inside the elastomer matrix while printing with a non-vulcanizing MR suspension (MR fluid) results in the structures that the MR fluid is encapsulated inside the elastomer matrix. The 3D printability of different materials has been studied by measuring their rheological properties and we found that the highly shear thinning and thixotropic properties are important for 3D printability. The quality of the printed filaments strongly depends on the key printing parameters such as extrusion pressure, initial height and feed rate. The experimental results from the forced vibration testing show that the 3D printed MR elastomers could change their elastic and damping properties when exposed to the external magnetic field. Furthermore, the 3D printed MR elastomer also exhibits the anisotropic behavior when the direction of the magnetic field is changed with respect to the orientation of the printed filaments. This study has demonstrated that the 3D printing is viable for fabrication of hybrid MR elastomers with controlled structures of magnetic particles or MR fluids.
AUTHOR
Year
2017
Journal/Proceedings
Materials and Design
Reftype
DOI/URL
URL
Groups
AbstractAbstract In this study, a novel magnetorheological (MR) hybrid elastomer has been developed using a 3D printing method. In such an MR hybrid elastomer, a controlled volume of an MR fluid was encapsulated layer by layer into an elastomer matrix by means of a 3D printer and each layer was a composite structure consisting of an MR fluid and an elastomer. Similar to current MR fluids and MR elastomers, mechanical properties of 3D printed MR hybrid elastomers could be controlled via an externally applied magnetic field. The experimental results showed that the relative change in the damping capability of the new MR elastomer was more pronounced than the change in its stiffness when exposed to an external magnetic field. The study demonstrated that the 3D printing technique is feasible for fabrication of MR elastomers with controlled microstructures including magnetic particles or MR fluids. The 3D printed MR hybrid elastomer is also a potential material as a tunable spring-damper element.