BROCHURES / DOCUMENTATION
APPLICATION NOTES
SCIENTIFIC PUBLICATIONS
You are researching: Intervertebral Disc (IVD) Tissue Engineering
                                                    Cell Type
                                                    Tissue and Organ Biofabrication
                                                    Skin Tissue Engineering
                                                    Drug Delivery
                                                    Biological Molecules
                                                    Solid Dosage Drugs
                                                    Stem Cells
                                                    Personalised Pharmaceuticals
                                                    Inducend Pluripotent Stem Cells (IPSCs)
                                                    Drug Discovery
                                                    Cancer Cell Lines
                                            
                                    
                    All Groups
                    
            - Biomaterials & Bioinks
- Application
- Bioelectronics
- Biomaterial Processing
- Tissue Models – Drug Discovery
- Industrial
- Drug Discovery
- In Vitro Models
- Robotics
- Electronics – Robotics – Industrial
- Medical Devices
- Tissue and Organ Biofabrication
	- Skin Tissue Engineering
- Uterus Tissue Engineering
- Gastric Tissue Engineering
- Nerve – Neural Tissue Engineering
- Meniscus Tissue Engineering
- Heart – Cardiac Patches Tissue Engineering
- Adipose Tissue Engineering
- Trachea Tissue Engineering
- Ocular Tissue Engineering
- Intervertebral Disc (IVD) Tissue Engineering
- Muscle Tissue Engineering
- Liver tissue Engineering
- Cartilage Tissue Engineering
- Bone Tissue Engineering
- Dental Tissue Engineering
- Drug Delivery
- Urethra Tissue Engineering
 
- BioSensors
- Personalised Pharmaceuticals
 
- Review Paper
- Printing Technology
- Biomaterial
- Thermoplastics
- Coaxial Extruder
- Non-cellularized gels/pastes
	- PEDOT
- Jeffamine
- Poly(methyl methacrylate) (PMMA)
- Polyethylene
- SEBS
- Polypropylene Oxide (PPO)
- Carbopol
- Sucrose Acetate
- Polyhydroxybutyrate (PHB)
- Epoxy
- poly (ethylene-co -vinyl acetate) (PEVA)
- Poly(itaconate-co-citrate-cooctanediol) (PICO)
- Poly(N-isopropylacrylamide) (PNIPAAm)
- Mineral Oil
- poly(octanediol-co-maleic anhydride-co-citrate) (POMaC)
- Poly(Oxazoline)
- 2-hydroxyethyl methacrylate (HEMA)
- Poly(trimethylene carbonate)
- 2-hydroxyethyl) methacrylate (HEMA)
- Zein
- Acrylamide
- Pluronic – Poloxamer
- Polyisobutylene
- Paraffin
- Silicone
- Konjac Gum
- Polyphenylene Oxide
- Ionic Liquids
- Polyvinylpyrrolidone (PVP)
- Gelatin-Sucrose Matrix
- Salt-based
- Chlorella Microalgae
- Acrylates
- Poly(Vinyl Formal)
- 2-hydroxyethyl-methacrylate (HEMA)
- Phenylacetylene
- Magnetorheological fluid (MR fluid – MRF)
- Salecan
- Poly(vinyl alcohol) (PVA)
 
- Micro/nano-particles
- Biological Molecules
- Bioinks
	- Gelatin
- Matrigel
- Gellan Gum
- Methacrylated Chitosan
- Methacrylated hyaluronic acid (HAMA)
- Pectin
- Silk Fibroin
- Pyrogallol
- Xanthan Gum
- Fibrinogen
- Fibrin
- Paeoniflorin
- Fibronectin
- (2-Hydroxypropyl)methacrylamide (HPMA)
- Methacrylated Collagen (CollMA)
- Carrageenan
- Glucosamine
- Chitosan
- Glycerol
- Poly(glycidol)
- Alginate
- Agarose
- Gelatin-Methacryloyl (GelMA)
- methacrylated chondroitin sulfate (CSMA)
- Cellulose
- Novogel
- carboxybetaine acrylamide (CBAA)
- Hyaluronic Acid
- Peptide gel
- Methacrylated Silk Fibroin
- Pantoan Methacrylate
- Polyethylene glycol (PEG) based
- α-Bioink
- Poly(Acrylic Acid)
- Collagen
- Elastin
- Heparin
- sulfobetaine methacrylate (SBMA)
 
- Ceramics
- Decellularized Extracellular Matrix (dECM)
- Metals
- Solid Dosage Drugs
 
- Bioprinting Technologies
- Bioprinting Applications
- Cell Type
- Keratinocytes
- Skeletal Muscle-Derived Cells (SkMDCs)
- Neurons
- Macrophages
- Human Trabecular Meshwork Cells
- Endothelial
- CardioMyocites
- Melanocytes
- Retinal
- Chondrocytes
- Embrionic Kidney (HEK)
- Corneal Stromal Cells
- Annulus Fibrosus Cells
- Fibroblasts
- β cells
- Astrocytes
- Myoblasts
- Pericytes
- Hepatocytes
- Cancer Cell Lines
- Bacteria
- Epicardial Cells
- Articular cartilage progenitor cells (ACPCs)
- Tenocytes
- Extracellular Vesicles
- Osteoblasts
- Monocytes
- Mesothelial cells
- Nucleus Pulposus Cells
- Epithelial
- Neutrophils
- Adipocytes
- Smooth Muscle Cells
- T cells
- Human Umbilical Vein Endothelial Cells (HUVECs)
- Organoids
- Stem Cells
- Spheroids
- Meniscus Cells
- Synoviocytes
 
- Institution
- Nanyang Technological University
- National Institutes of Health (NIH)
- Ningbo Institute of Materials Technology and Engineering (NIMTE)
- KU Leuven
- Politecnico di Torino
- Utrecht Medical Center (UMC)
- Rizzoli Orthopaedic Institute
- Queen Mary University
- Veterans Administration Medical Center
- University of Minnesota
- University of Manchester
- University of Bucharest
- Royal Free Hospital
- Hong Kong University
- University of Barcelona
- Chinese Academy of Sciences
- ENEA
- University of Nottingham
- University of Geneva
- SINTEF
- Rice University
- Jiangsu University
- Rowan University
- Trinity College
- Novartis
- University of Central Florida
- Hefei University
- Leibniz University Hannover
- Chalmers University of Technology
- Karlsruhe institute of technology
- University of Freiburg
- Helmholtz Institute for Pharmaceutical Research Saarland
- Leipzig University
- University Hospital Basel
- AO Research Institute (ARI)
- Shanghai University
- Univerity of Hong Kong
- University of Toronto
- Brown University
- Polish Academy of Sciences
- University of Wurzburg
- Technical University of Dresden
- University of Nantes
- Montreal University
- Shandong Medical University
- University of Birmingham
- Institute for Bioengineering of Catalonia (IBEC)
- University of Michigan – School of Dentistry
- Myiongji University
- Harbin Institute of Technology
- Technical University of Berlin
- University of Amsterdam
- University of Tel Aviv
- University of Applied Sciences Northwestern Switzerland
- Anhui Polytechnic
- University Children's Hospital Zurich
- Bayreuth University
- Aschaffenburg University
- University of Michigan, Biointerfaces Institute
- Abu Dhabi University
- Jiao Tong University
- University of Aveiro
- Ghent University
- Chiao Tung University
- Sree Chitra Tirunal Institute
- University of Sheffield
- University of Michigan – Biointerfaces Institute
- National University of Singapore
- CIC biomaGUNE
- Kaohsiung Medical University
- DTU – Technical University of Denmark
- University of Taiwan
- Adolphe Merkle Institute Fribourg
- Halle-Wittenberg University
- Baylor College of Medicine
- INM – Leibniz Institute for New Materials
- National Yang Ming Chiao Tung University
- University of Vilnius
- Zurich University of Applied Sciences (ZHAW)
- Innotere
- L'Oreal
- Tiangong University
- Xi’an Children’s Hospital
- ETH Zurich
- Hallym University
- Nanjing Medical University
- University of Bordeaux
- Innsbruck University
- DWI – Leibniz Institute
 
                            AUTHOR
                            
                                    
                                
                        
                        
                            Title
                            
                                    Suspension bioprinted whole intervertebral disc analogues enable regional stiffness- and hypoxia-regulated matrix secretion by primary human nucleus pulposus and annulus fibrosus cells
                                
                                                            
                                    
                                        
                                            [Abstract]
                                        
                                    
                                
                                                    
                                                
                            Year
                            
                                    2025
                                
                        
                        
                            Journal/Proceedings
                            
                                    Acta Biomaterialia
                                
                        
                        
                            Reftype
                            
                                    
                                
                        
                        
                                                    
                                    Groups
                                
                                                                        
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                AbstractIntervertebral disc (IVD) degeneration is a leading cause of back pain, and while studies have revealed the roles resident nucleus pulposus (NP) and annulus fibrosus (AF) cells play in degeneration, tissue-engineered IVD models are needed to better investigate the mechanisms underpinning these cell-driven changes. This study therefore integrated suspension baths with bioprinting to create four multi-material, whole IVD analogues and investigated the combined effect of reduced oxygen tension and increased regional matrix stiffness on disc cell phenotype since these factors correlate with IVD degeneration. Primary NP and AF cells were seeded into alginate-collagen hydrogels and bioprinted into biphasic IVD structures. The nascent area, intensity, and integrated density of pro-collagen type I, collagen type VI, aggrecan, and hyaluronic acid were quantified using immunofluorescence staining in each region. Stiffness-mediated collagen and glycosaminoglycan production was observed in the AF, and increased stiffness downregulated collagen type VI in the AF but upregulated it in NP. Oxygen tension impacted proteoglycan production, with hypoxia increasing aggrecan and hyaluronic acid in both regions. This work represents a step towards the automated biofabrication of whole IVD analogues and expands the state-of-the-art in suspension bioprinting using regionally specific matrix cues. The findings provide important insights into two key microenvironmental factors driving IVD degeneration. Statement of Significance This manuscript outlines an original application of suspended layer additive manufacturing to biofabricate novel, biphasic intervertebral disc analogues containing patient-derived primary human cells. Significantly, the bioprinted models demonstrated biological function and were used to assess the effect of stiffness and oxygen concentration on regional matrix production using a range of internationally-recognized phenotypic intervertebral disc cell markers. The study therefore furthers the state-of-the-art in suspended bioprinting using regionally specific matrix cues and paves the way for future bioprinted disc models that can serve as biosimulators capable of generating insights into key mechanisms governing tissue development, homeostasis, and degeneration.
                            AUTHOR
                            
                                    
                                
                        
                        
                                                
                            Year
                            
                                    2018
                                
                        
                        
                            Journal/Proceedings
                            
                                    Advanced Materials
                                
                        
                        
                            Reftype
                            
                                    
                                
                        
                        
                            DOI/URL
                                                                                        
                                    
                                        
                                            DOI
                                        
                                    
                                
                                                    
                                                    
                                    Groups
                                
                                                                        
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                AbstractAbstract Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D‐printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect‐rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect‐tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics.
                            AUTHOR
                            
                                    
                                
                        
                        
                            Title
                            
                                    Biofabrication of an Ovine Intervertebral Disc Model by Combining a Polycaprolactone Frame with a Bioprinted Alginate Hydrogel
                                
                                                            
                                    
                                        
                                            [Abstract]
                                        
                                    
                                
                                                    
                                                
                            Year
                            
                                    2025
                                
                        
                        
                            Journal/Proceedings
                            
                                    Biofabrication
                                
                        
                        
                            Reftype
                            
                                    
                                
                        
                        
                            DOI/URL
                                                                                        
                                    
                                        
                                            DOI
                                        
                                    
                                
                                                    
                                                    
                                    Groups
                                
                                                                        
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                AbstractThe intervertebral disc (IVD) primarily comprises an outer ring of collagen fibers (annulus fibrosus, AF), which encases a soft, gelatinous core (nucleus pulposus, NP). Existing in vitro models have failed to integrate these two tissues effectively or accurately replicate their intricate organization. By combining two biofabrication techniques, we developed a novel 3D in vitro model that closely mimics the organization of an ovine IVD. Our approach employs a polycaprolactone (PCL) frame produced via melt electrowriting to recreate the multilamellar architecture of the annulus fibrosus. Ovine primary cells, encapsulated in a photocrosslinkable alginate hydrogel, were precisely extruded within the multilamellar structure, thereby mimicking the native shape and size of an ovine disc. The bioink containing the NP cells was deposited at the center of the construct, while the bioink with the AF cells was strategically layered in between the lamellae of the PCL frame. Photocrosslinking was optimized to match the native stiffness of the disc. The constructs were maintained in culture for 28 days, during which we thoroughly assessed reproducibility, stability, and cell viability and phenotype. The results unequivocally demonstrated that the PCL frame effectively guided the alignment and proliferation of AF cells, while the alginate hydrogel preserved NP cell phenotype. This model successfully replicates the organization of the IVD, providing a promising platform for advancing our understanding of disc biology and driving the development of novel therapeutic strategies.
                            AUTHOR
                            
                                    
                                
                        
                        
                            Title
                            
                                    3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture
                                
                                                            
                                    
                                        
                                            [Abstract]
                                        
                                    
                                
                                                    
                                                
                            Year
                            
                                    2024
                                
                        
                        
                            Journal/Proceedings
                            
                                    Biofabrication
                                
                        
                        
                            Reftype
                            
                                    
                                
                        
                        
                            DOI/URL
                                                                                        
                                    
                                        
                                            DOI
                                        
                                    
                                
                                                    
                                                    
                                    Groups
                                
                                                                        
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                            
                                                                                                AbstractIntervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3–5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack of in vitro models of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observed in vivo with elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.

