SCIENTIFIC PUBLICATIONS

You are researching: Helmholtz Institute for Pharmaceutical Research Saarland
Matching entries: 2 /2
All Groups
AUTHOR Aliyazdi, Samy and Frisch, Sarah and Hidalgo, Alberto and Frank, Nicolas and Krug, Daniel and Müller, Rolf and Schaefer, Ulrich F. and Vogt, Thomas and Loretz, Brigitta and Lehr, Claus-Michael
Title 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complex in vitro infection models [Abstract]
Year 2023
Journal/Proceedings Biofabrication
Reftype
DOI/URL DOI
Abstract
Biofilm-associated infections are causing over half a million deaths each year, raising the requirement for innovative therapeutic approaches. For developing novel therapeutics against bacterial biofilm infections, complex in vitro models that allow to study drug effects on both pathogens and host cells as well as their interaction under controlled, physiologically relevant conditions appear as highly desirable. Nonetheless, building such models is quite challenging because (1) rapid bacterial growth and release of virulence factors may lead to premature host cell death and (2) maintaining the biofilm status under suitable co-culture requires a highly controlled environment. To approach that problem, we chose 3D bioprinting. However, printing living bacterial biofilms in defined shapes on human cell models, requires bioinks with very specific properties. Hence, this work aims to develop a 3D bioprinting biofilm method to build robust in vitro infection models. Based on rheology, printability and bacterial growth, a bioink containing 3% gelatin and 1% alginate in Luria-Bertani-medium was found optimal for Escherichia coli MG1655 biofilms. Biofilm properties were maintained after printing, as shown visually via microscopy techniques as well as in antibiotic susceptibility assays. Metabolic profile analysis of bioprinted biofilms showed high similarity to native biofilms. After printing on human bronchial epithelial cells (Calu-3), the shape of printed biofilms was maintained even after dissolution of non-crosslinked bioink, while no cytotoxicity was observed over 24 h. Therefore, the approach presented here may provide a platform for building complex in vitro infection models comprising bacterial biofilms and human host cells.
AUTHOR Aliyazdi, Samy and Frisch, Sarah and Neu, Tobias and Veldung, Barbara and Karande, Pankaj and Schaefer, Ulrich F. and Loretz, Brigitta and Vogt, Thomas and Lehr, Claus-Michael
Title A Novel 3D Printed Model of Infected Human Hair Follicles to Demonstrate Targeted Delivery of Nanoantibiotics [Abstract]
Year 2024
Journal/Proceedings ACS Biomater. Sci. Eng.
Reftype
DOI/URL DOI
Abstract
Hair follicle-penetrating nanoparticles offer a promising avenue for targeted antibiotic delivery, especially in challenging infections like acne inversa or folliculitis decalvans. However, demonstrating their efficacy with existing preclinical models remains difficult. This study presents an innovative approach using a 3D in vitro organ culture system with human hair follicles to investigate the hypothesis that antibiotic nanocarriers may reach bacteria within the follicular cleft more effectively than free drugs. Living human hair follicles were transplanted into a collagen matrix within a 3D printed polymer scaffold to replicate the follicle’s microenvironment. Hair growth kinetics over 7 days resembled those of simple floating cultures. In the 3D model, fluorescent nanoparticles exhibited some penetration into the follicle, not observed in floating cultures. Staphylococcus aureus bacteria displayed similar distribution profiles postinfection of follicles. While rifampicin-loaded lipid nanocapsules were as effective as free rifampicin in floating cultures, only nanoencapsulated rifampicin achieved the same reduction of CFU/mL in the 3D model. This underscores the hair follicle microenvironment’s critical role in limiting conventional antibiotic treatment efficacy. By mimicking this microenvironment, the 3D model demonstrates the advantage of topically administered nanocarriers for targeted antibiotic therapy against follicular infections.